
1!
CIS 422/522

CIS 422/522 Fall 2013! 1!

From Module Decomposition to
Interface Specification !

Designing a module structure!
FWS Example!

CIS 422/522 Fall 2013! 2!

Elements of Architectural Design!

•  Design goals!
–  What are we trying to accomplish in the

decomposition?!
•  Relevant Structure!

–  How to we capture and communicate design
decisions?!

–  What are the components, relations, interfaces?!
•  Decomposition principles!

–  How do we distinguish good design decisions?!
–  What decomposition (design) principles support the

objectives?!
•  Evaluation criteria!

–  How do I tell a good design from a bad one?!
2

CIS 422/522 Fall 2013! 3!

Architecture Design Process!

Building architecture to address business goals:!
1.  Understand the goals for the system!
2.  Define the quality requirements!
3.  Design the architecture"

1.  Views: which architectural structures should we use?  
(goals<->architectural structures<->representation)!

2.  Documentation: how do we communicate design decisions?!
3.  Design: how do we decompose the system?!

4.  Evaluate the architecture (is it a good design?)!

2!
CIS 422/522

CIS 422/522 Fall 2013! 4!

Examples of Key Architectural
Structures!

•  Module Structure!
–  Decomposition of the system into work

assignments (called modules)"
–  Most influential design time structure!

•  Modifiability, work assignments, concurrent development,
maintainability, reusability, understandability, etc.!

•  Uses Structure!
–  Determine which modules may use one another’s

services!
–  Determines subsetability, ease of integration!

CIS 422/522 Fall 2013! 5!

Designing the Module Structure!

CIS 422/522 Fall 2013! 6!

Modularization!

•  For any large, complex system, must divide
the coding into work assignments (WBS)!

•  Each work assignment is called a “module”!
•  Properties of a “good” module structure!

–  Parts can be designed independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

3!
CIS 422/522

CIS 422/522 Fall 2013! 7!

Relation to Stakeholder Goals!
•  Reduce complexity, improve manageability!
•  Coding!

–  Can write modules with little knowledge of other modules!
–  Replace modules without reassembling the whole system!

•  Managerial!
–  Allows concurrent development !
–  Avoids “Mythical Man Month” effect (“adding people to a late

software project makes it later”)!
•  Flexibility/Maintainability!

–  Anticipated changes affect only a small number of modules
(preferably one)!

–  Can calculate the impact and cost of change!
•  Review/communicate!

–  Can understand or review the system one module at a time!

CIS 422/522 Fall 2013! 8!

Notional Modules!

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

What characterizes
a module?

CIS 422/522 Fall 2013! 9!

What is a module?!

•  Concept due to David Parnas (conceptual basis for
objects)!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to other parts

of the systems!
–  Its secrets: what the module hides (encapsulates). Design

and implementation decisions that other parts of the system
should not depend on"

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible properties

but not the implementation!
–  May, or may not, directly correspond to programming

components like classes/objects!
•  E.g., one module may be implemented by several objects!

4!
CIS 422/522

CIS 422/522 Fall 2013! 10!

Floor Plan Analogy!

•  Meaning of “design-
time abstraction”!

•  Represents a
particular set of
components and
relationships!

•  Removes unnecessary
detail!

•  But, is precise in what
it represents!

–  Does not mean “vague”!
–  Correspondence to

implementation is
verifiable!

CIS 422/522 Fall 2013! 11!

A Simple Module!

•  A simple integer stack!
–  push: push integer on stack top!
–  pop: remove top element!
–  top: get value of top element!

•  What information is on the
interface?!

•  What are the secrets?!
•  What information is missing?!
•  Why is this an abstraction?!

stack
int top()

push(int)

pop()

CIS 422/522 Fall 2013! 12!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  top: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

•  Note: a real spec needs much more
than this (discuss later)!

stack
int top()

push(int)

pop()

5!
CIS 422/522

CIS 422/522 Fall 2013! 13!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

CIS 422/522 Fall 2013! 14!

Is a module a class/object?!

•  The programming language concepts of classes and
objects are based on Parnas’ concept of modules!

•  To separate design-time concerns from coding
issues, however, they are not the same thing"
–  A module must be a work assignment at design time, does

not dictate run-time structures!
–  Coder free to implement with a different class structure as

long as the interface capabilities are provided!
–  Coder free to make changes as long as the interface does

not change!
•  In simple cases, we will often implement each

module as a class/object!

CIS 422/522 Fall 2013! 15!

Module Hierarchy!

•  For large systems, the set of modules need to
be organized such that!
–  We can check that all of the functional

requirements have been allocated to some module
of the system!

–  Developers can easily find the module that
provides any given capability!

–  When a change is required, it is easy to determine
which modules must be changed!

•  The submodule-of relation provides this
architectural view (parent/child)!

6!
CIS 422/522

CIS 422/522 Fall 2013! 16!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

Parent Modules
= !

Buckets!

CIS 422/522 Fall 2013! 17!

Modular Structure!
•  Architecture = components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible behavior)!
–  Defined in terms of access procedures (services or methods)!
–  Only access to internal state!

CIS 422/522 Fall 2013! 18!

A Decomposition Approach!

7!
CIS 422/522

CIS 422/522 Fall 2013! 19!

Decomposition Strategies Differ!

•  How do we develop this structure so that we
know the leaf modules make independent work
assignments?!

•  Many ways to decompose hierarchically!
–  Functional: each module is a function!
–  Steps in processing: each module is a step in a chain

of processing!
–  Data: data transforming components!
–  Client/server!
–  Use-case driven development!

•  But, these result in different kinds of
dependencies (strong coupling)!

CIS 422/522 Fall 2013! 20!

Submodule-of Relation!

•  To define the structure, need the relation and the
rule for constructing the relation!

•  Relation: sub-module-of!
•  Rules!

–  If a module consists of parts that are likely to change
independently, then decompose it into submodules!

–  Don’t stop until each module contains only things likely
to change together!

–  Anything that other modules should not depend on
become secrets of the module (e.g., implementation
details)!

–  If the module has an interface, only things not likely to
change can be part of the interface!

CIS 422/522 Fall 2013! 21!

Effects of Changes!

•  Consider what happens to
communication among
module developers!

•  Suppose we have groups of
requirements R1 – R3:!

–  R1 and R3 are related and
likely to change together!

–  R2 is likely to change
independently!

•  Suppose we put R1 and R2
in the same module and
assign to different teams!

–  What happens when R1
changes?!

–  R2?!
•  Suppose R1 and R3 are put

in the same module?!

R3!
R2!

R1!

R2!
R1! R3!

Interface! Interface!

8!
CIS 422/522

CIS 422/522 Fall 2013! 22!

Applied Information Hiding!

•  The rule we just described is calls the information
hiding principle"

•  Information hiding (or encapsulation): Design
principle of limiting dependencies between
components by hiding information other
components should not depend on!

•  An information hiding decomposition is one
following the design principles that:!
–  System details that are likely to change independently

are encapsulated in different modules !
–  The interface of a module reveals only those aspects

considered unlikely to change!

CIS 422/522 Fall 2013! 23!

The FWS Module Structure!

An overly simplified example!

CIS 422/522 Fall 2013! 24!

A Floating Weather Station!
!
!

Floating weather stations (FWS) are buoys that
float at sea and that are equipped with sensors to
monitor weather conditions. Each FWS has an on-
board computer that maintains a history of recent
weather data. At regular intervals the buoy
transmits the weather data using a radio
transmitter.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

9!
CIS 422/522

CIS 422/522 Fall 2013! 25!

http://www.ndbc.noaa.gov/!

CIS 422/522 Fall 2013! 26!

CIS 422/522 Fall 2013! 27!

Drifting FWS!

10!
CIS 422/522

CIS 422/522 Fall 2013! 28!

Floating Weather Stations (FWS)!
Floating weather stations (FWS) are buoys that float at sea and that are equipped with
sensors to monitor weather conditions. Each FWS has an on-board computer that
maintains a history of recent weather data. At regular intervals the buoy transmits the
weather data using a radio transmitter.!
 !
The initial prototype for the buoy will measure the wind speed in knots. The buoys will
use four small wind speed sensors (anemometers): two high-resolution sensors and two,
less expensive, low-resolution sensors. !
 !
Accuracy is software enhanced by computing a weighted-average of the sensor readings
over time. Each sensor is read once every second with the readings averaged over four
readings before being transmitted. The calculated wind speed is transmitted every two
seconds.!
 !
Over the course of development and in coming versions, we anticipate that the hardware
and software will be routinely upgraded including adding additional types of sensors (e.g.
wave height, water temperature, wind direction, air temperature). A system that can be
rapidly revised to accommodate new features is required.!
!

CIS 422/522 Fall 2013! 29!

FWS Likely Changes!

Likely changes 
Behavior!

!
C 1. The formula used for computing wind speed from the sensor readings may vary. In
particular, the weights used for the high resolution and low resolution sensors may vary, and the
number of readings of each sensor used (the history of the sensor) may vary.!
C2. The format of the messages that an FWS sends may vary.  
C3. The transmission period of messages from the FWS may vary. 
C4. The rate at which sensors are scanned may vary.!
 !
Devices!
C4. The number and types of wind speed sensors on a FWS may vary.!
C5. The resolution of the wind speed sensors may vary.!
C6. The wind speed sensor hardware on a FWS may vary.!
C7. The transmitter hardware on a FWS may vary.!
C8. The method used by sensors to indicate their reliability may vary.!

CIS 422/522 Fall 2013! 30!

Classifying Changes!

•  Three classes of change!
–  hardware!

•  new devices!
•  new computer!

–  required behavior!
•  new functions!
•  new rules of computing values!
•  new timing constraints!

–  software decisions!
•  new ways to represent data types!
•  different algorithms or data structures!

From  
Requirements  
Specification!

11!
CIS 422/522

CIS 422/522 Fall 2013! 31!

Top-Level Module Decomposition!

•  Device Interface (DI)!
–  Secret = properties of physical

hardware!
–  Encapsulates any hardware

changes!
•  Behavior-Hiding (BH)!

–  Secret = algorithms/data
addressing requirements!

–  Encapsulates requirements
changes!

•  Software Decision (SD)!
–  Secret = decisions by designer!
–  Encapsulates internal design

decisions!

Device Interface

Behavior Hiding

Software Decision

CIS 422/522 Fall 2013! 32!

DI Submodules!

•  Windspeed Sensor Driver!
–  Service: provides access wind

speed values!
–  Secrets: Anything that would

change if the current wind speed
sensor were replaced with
another. For example, the
details of data formats and how
to communicate with the sensor!

•  Transmitter Driver!
–  Service: transmit given data on

request!
–  Secrets: details of transmitter

hardware!

Device Interface

Windspeed Sensor
Driver

Transmitter
Driver

CIS 422/522 Fall 2013! 33!

FWS Modular Structure!
FWS!

Behavior  
Hiding!

Device  
Interface!

Software  
Decision!

Sensor  
Driver!

Transmitter  
Driver!

Controller! Message  
Generation!

Message  
Format!

Sensor  
Monitor!

Data  
Banker! Averager!

Submodule-of! Encapsulates all changes  
to the message format!

Encapsulates all changes  
if transmitter protocol changes!

Module!

12!
CIS 422/522

CIS 422/522 Fall 2013! 34!

Key Properties of Module Structure!

•  Keep the purpose of the structure in mind !
•  Goals: !

–  Robust relative to change!
–  Can determine where to put or find specific information

quickly and easily!
•  Partition: each kind of information goes in exactly one

place!
–  Structure guides the reader to location of specific information!
–  Decisions about structure chose to be unlikely to change!

•  Information hiding:!
–  Information likely to change encapsulated in modules!
–  Information that changes independently put in diff. modules!

CIS 422/522 Fall 2013! 35!

Documenting a Module Structure!

Communicating Architectural Decisions!

CIS 422/522 Fall 2013! 36!

Architecture Development Process!

Building architecture to address business goals:!
1.  Understand the goals for the system!
2.  Define the quality requirements!
3.  Design the architecture!

1.  Views: which architectural structures should we use?!
2.  Documentation: how do we communicate design decisions?!
3.  Design: how do we decompose the system?!

4.  Evaluate the architecture (is it a good design?)!

13!
CIS 422/522

CIS 422/522 Fall 2013! 37!

Architectural Specification!
Module Guide!

–  Documents the module structure:!
•  The set of modules!
•  The responsibility of each module in terms of the

module’s secret!
•  The “submodule-of relationship”!
•  The rationale for design decisions !

–  Document purpose(s)!
•  Guide for finding the module responsible for some aspect

of the system behavior!
– Where to find or put information!
– Determine where changes must occur!

•  Baseline design document!
•  Provides a record of design decisions (rationale)!

CIS 422/522 Fall 2013! 38!

Architectural Specification!
Module Interface Specifications!

–  Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)!

•  Specify required behavior by fully specifying behavior of the
module’s access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Fall 2013! 39!

Excerpts From The FWS Module Guide (1)!

1.  Behavior Hiding Modules!
The behavior hiding modules include programs that need to be changed if the
required outputs from a FWS and the conditions under which they are produced
are changed. Its secret is when (under what conditions) to produce which
outputs. Programs in the behavior hiding module use programs in the Device
Interface module to produce outputs and to read inputs.!
1.1 Controller!
Service!
Provide the main program that initializes a FWS.!
Secret!
How to use services provided by other modules to start and maintain the proper
operation of a FWS.!
!

14!
CIS 422/522

CIS 422/522 Fall 2013! 40!

Excerpts From The FWS Module Guide (2)!

2.  Device Interface Modules!
!The device interface modules consist of those programs that need to be changed if the input
from hardware devices to FWSs or the output to hardware devices from FWSs change. The
secret of the device interface modules is the interfaces between FWSs and the devices that
produce its inputs and that use its output.!

!!
2.1. Wind Sensor Device Driver!
!Service!
!Provide access to the wind speed sensors. There may be a submodule for each sensor type.!
!Secret!
!How to communicate with, e.g., read values from, the sensor hardware.!
!Note!
!This module hides the boundary between the FWS domain and the sensors domain. The
boundary is formed by an abstract interface that is a standard for all wind speed sensors.
Programs in this module use the abstract interface to read the values from the sensors.!

CIS 422/522 Fall 2013! 41!

Module Structure Accomplishments!

•  What have we accomplished in creating the
module structure?!

•  Divided the system into parts (modules) such that!
–  Each module is a work assignment for a person or

small team!
–  Each part can be developed independently!
–  Every system function is allocated to some module!

•  Informally described each module!
–  Services: services that the module implements that

other modules can use!
–  Secrets: implementation decisions that other modules

should not depend on!

CIS 422/522 Fall 2013! 42!

Questions!

15!
CIS 422/522

CIS 422/522 Fall 2013! 43!

Modularization!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Components can be designed independently!
–  Components can be understood independently!
–  Components can be tested independently!
–  Components can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Fall 2013! 44!

Notional Modules!

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

CIS 422/522 Fall 2013! 45!

What is a module?!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to

other parts of the systems!
–  Its secrets: what the module hides (encapsulates).

Design/implementation decisions that other parts
of the system should not depend on!

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible

properties but not the implementation!
–  May or may not directly correspond to

programming components like classes/objects!

16!
CIS 422/522

CIS 422/522 Fall 2013! 46!

A Simple Module!

•  The interface specifies what a
programmer needs to know to use
the stack correctly, e.g.!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided
but allows many possible
implementations!

•  Note: a real spec needs much
more than this (discuss later)!

stack
peek(int)

push(int)

pop()

CIS 422/522 Fall 2013! 47!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

